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Abstract 

Background: The development of wearable health monitoring systems is garnering 
tremendous interest in research, technology and commercial applications. Their ability 
of providing unique capabilities in continuous, real-time, and non-invasive tracking 
of the physiological markers of users can provide insights into the performance and 
health of individuals. Electrocardiogram (ECG) signals are of particular interest, as 
cardiovascular disease is the leading cause of death globally. Monitoring heart health 
and its conditions such as ventricular disturbances and arrhythmias can be achieved 
through evaluating various features of ECG such as R-peaks, QRS complex, T-wave, and 
P-wave. Despite recent advances in biosensors for wearable applications, most of the 
currently available solutions rely solely on a single system attached to the body, limit-
ing the ability to obtain reliable and multi-location biosignals. However, in engineer-
ing systems, sensor fusion, which is the optimal integration and processing of data from 
multiple sensors, has been a common theme and should be considered for wearables. 
In recent years, due to an increase in the availability and variety of different types of 
sensors, the possibility of achieving sensor fusion in wearable systems has become 
more attainable. Sensor fusion in multi-sensing systems results in significant enhance-
ments of information inferences compared to those from systems with a sole sensor. 
One step towards the development of sensor fusion for wearable health monitoring 
systems is the accessibility to multiple reliable electrophysiological signals, which can 
be recorded continuously.

Results: In this paper, we develop a textile-based multichannel ECG band that has 
the ability to measure ECG from multiple locations on the waist. As a proof of concept, 
we demonstrate that ECG signals can be reliably obtained from different locations on 
the waist where the shape of the QRS complex is nearly comparable with recordings 
from the chest using traditional gel electrodes. In addition, we develop a probabil-
istic approach—based on prediction and update strategies—to detect R-peaks from 
noisy textile data in different statuses, including sitting, standing, and jogging. In this 
approach, an optimal search method is utilized to detect R-peaks based on the history 
of the intervals between previously detected R-peaks. We show that the performance 
of our probabilistic approach in R-peak detection is significantly better than that based 
on Pan–Tompkins and optimal-threshold methods.
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Conclusion: A textile-based multichannel ECG band was developed to track the heart 
rate changes from multiple locations on the waist. We demonstrated that (i) the ECG 
signal can be detected from different locations on the waist, and (ii) the accuracy of the 
detected R-peaks from textile sensors was improved by using our proposed probabil-
istic approach. Despite the limitations of the textile sensors that might compromise 
the quality of ECG signals, we anticipate that the textile-based multichannel ECG band 
can be considered as an effective wearable system to facilitate the development of 
sensor fusion methodology for pervasive and non-invasive health monitoring through 
continuous tracking of heart rate variability (HRV) from the waist. In addition, from 
the commercialization point of view, we anticipate that the developed band has the 
potential to be integrated into garments such as underwear, bras or pants so that indi-
viduals can use it on a daily basis.

Keywords: Wearable electronics, Sensor fusion, Textile sensors, Multichannel ECG, 
R-peak detection, Probabilistic algorithm

Background
The ultimate goal of the wearable technology is to enable continuous access to humans’ 
physiological states. This is achievable through real-time tracking of physiological 
signals that can capture bio-information underlying the users’ health status. Wear-
able health monitoring systems allow clinicians and caretakers to continuously monitor 
changes in the patient’s vital signs. For example, ECG monitoring can be used for track-
ing the health conditions of people suffering from ventricular disturbances, arrhythmias 
and other diseases like diabetes and Parkinson’s disease [1–3]. Wearable health monitor-
ing, in turn, empowers patients to be active in the optimal management of their chronic 
or acute conditions [4, 5] and provides non-intrusive monitoring of at-risk groups [6]. 
Therefore, wearable systems for continuous health monitoring provide proactive, afford-
able, and personalized health care services to the general population, especially individ-
uals in need [7, 8].

Despite the ever-increasing use and commercialization of wearable electronics, limita-
tions are impeding the success and utility of existing products for health monitoring. 
Devices such as smart watches are limited to a single location on the body (e.g., the 
wrist) [9], thereby restricting the access to different types of biosignals which are detect-
able from multiple locations on the body. While some systems such as Holter monitor 
can detect signals from multiple locations on the body, they are often obtrusive to day-
to-day activities due to the presence of wires and the need for a clinician to position gel 
electrodes on the body. In addition, the embedded sensors are uncomfortable and have 
limited longevity. Current wearables, such as the Polar Belt [10] (© Polar Electro) and 
Myo™ armband [11] (North™, Waterloo, Canada, formerly Thalmic Labs) are obstruc-
tive as they must be worn as an addition to an individual’s day-to-day attire. To address 
these challenges, multi-sensing and processing approaches like sensor fusion might offer 
a unique solution, specifically if they can be integrated into comfortable, wearable, and 
multi-purpose electrodes like textile sensors.

Smart or electronic textiles (e-textiles) are textile products capable of interacting with 
the environment and the users. The development of e-textiles is made possible through 
flexible textile circuitry, which paves the way for a truly unobtrusive and universal 
garment-based wearable devices. Textile sensors have been used to sense biopotential 
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[12–14], temperature and humidity [15, 16], respiration [17], and pressure sensing [18–
20]. As such, e-textiles present a unique opportunity for unobtrusive integration of dif-
ferent sensing modalities in multiple locations on the body. In recent years, numerous 
studies have looked into the effects of electrode position, size, and skin contact pressure 
(holding pressure) on signal quality [21–23]. In addition, other factors such as electrode 
to skin sensorial comfort, integration or construction techniques, and laundering/reus-
ability need to be considered in the design, development and selection of textile elec-
trodes for long-term ECG monitoring [24, 25]. Athos, Hexoskin, OMSignal and Hitoe 
are examples of textile-based electronic devices that can collect ECG signal from the 
torso. Silver-based conductive yarns, silicone-based electrodes, and conductive polymer 
coated fibers are used in these products to create the textiles electrodes [26–28].

In this paper, we describe the development and assessment of a textile-based multi-
channel ECG band that measures ECG from multiple locations on the waist. This band 
contains four knitted textile sensors. Two types of conductive yarns are selected, creating 
silver-based and carbon-based textile sensors. Using a data acquisition board designed 
in-house for multichannel textile sensing, we show that ECG signals can be reliably 
obtained from different locations on the waist where the shape of the QRS complex is 
reasonably similar to those recorded from the chest using traditional gel electrodes. As 
well, we develop a novel probabilistic approach for detecting R-peaks that enables heart 
rate variability (HRV) to be continuously monitored during different tasks, namely, sit-
ting, standing, and jogging. Our investigation suggests that the developed textile-based 
band can be considered as the first step towards the development of sensor fusion meth-
odology for pervasive and non-invasive health monitoring through continuous tracking 
of HRV from the waist. Although the developed waist band is used as a proof of princi-
ple in this paper, we anticipate that this textile-based band can be integrated into gar-
ments such as underwear, bras or pants.

The organization of this paper is as follows. In “Results”, we show that the R-peaks 
can be reliably detected from different locations on the waist using our textile-based 
ECG band. As well, the performance of the proposed algorithm for R-peak detection 
from textile sensors is compared with that of the conventional algorithms. Concluding 
remarks, discussions, and future directions are provided in “Discussion”. Finally, “Mate-
rials and methods” are provided in four sections, namely, textile sensors, multichannel 
ECG recording units, signal processing algorithm, and statistical tests.

Results
In this paper, ECG signals were simultaneously recorded from four different loca-
tions on the waist using textile sensors (see "Materials and methods" for the exact 
locations of the sensors), as well as a reference ECG signal from the chest using 
gel electrode from 6 subjects. All the tests were conducted in accordance with a 
Research Ethics Board (REB) approved by the University of Toronto. All participants 
gave their consent to participate after being informed of the nature and objectives 
of the experiment. Data were recorded during two stationary statuses, namely, sit-
ting and standing, each of which lasts for 2 min. Following the same protocol, ECG 
signals were recorded during jogging to compare the performance of the proposed 
algorithm for R-peak detection, i.e., History-Dependent Inverse Gaussian (HDIG), 
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vs. conventional algorithms, namely, optimal-threshold and Pan–Tompkins (PT) 
[29]. The detected R-peaks were compared with those detected (simultaneously) 
from the chest using gel electrode (which is considered as the reference signal), and 
the accuracy (ACC) and F1 score were calculated (see Additional file 1: Appendix A 
for more details). The ACC  and F1-score are the major statistics to quantify the qual-
ity of binary classifications (R-peak detection). Both measures lie within [0,1], where 
0 and 1 represent the worst and best performances, respectively.

Textile sensors are reliable for continuous detection of R‑peaks from the waist

Figure 1 shows two examples of recorded ECG signals and detected R-peaks using 
silver and carbon electrodes. As can be seen in this figure, the recorded ECG signals 
from the waist using both silver and carbon textile sensors are reliable enough to 
accurately track the heart rate.

Figure  2 shows the performance of each textile sensor for sitting and standing 
statuses by the mean and standard deviation of ACC and F1-score of the detected 
R-peaks.

As it is obvious, the accuracy of detection of R-peaks from the waist using both 
silver and carbon sensors is comparable with that detected from the gel electrode 
(chest), confirming that the heart rate can be monitored from waist using textile 
electrodes in the stationary statuses.

Textile sensor (carbon)
50 uV 

1 Sec 

Detected R-peak

Textile sensor (silver)
50 uV 

1 Sec 

Detected R-peak

1 Sec 1 Sec 

Fig. 1 Two ECG signals recorded in the sitting status from the waist using carbon (left) and silver electrodes 
(right)

0

0.2

0.4

0.6

0.8

1

F1-score 

Sitting Standing

Carbon sensor Silver sensor 

Pe
rfo

rm
an

ce

Sitting Standing
0

0.2

0.4

0.6

0.8

1

Accuracy 

Sitting Standing

Carbon sensor Silver sensor 

Pe
rfo

rm
an

ce

Sitting Standing

Fig. 2 Performance of textile sensors in R-peak detection from the waist. The HDIG algorithm is used for 
R-peak detection. The accuracy (left) and F1-score (right) of the detected R-peaks in different states (sitting 
and standing) are calculated with respect to those detected by gel electrode (chest)
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Proposed R‑peak detection algorithm for textile‑based recordings is robust to motion 

artifact

Nearly all textile-based sensors induce slowly varying motion artifacts into the signal 
[30]. Although such artifacts can be reduced by the use of appropriate electronic circuits 
as well as wearable designs which maintain a consistent skin–electrode connection with 
enough pressure, the presence of motion artifact in textile sensors is inevitable (see [31–
38] for other alternative ways to reduce motion artifact in textile sensors). This neces-
sitates the use of effective signal processing algorithms. Here, we show that exploiting 
the HDIG algorithm for peak detection (i.e., the 4th step of the proposed algorithm, see 
"Materials and methods") significantly enhances the ACC and F1-score of heart rate. The 
performance of the HDIG method is compared to that of the optimal-threshold method 
for both sitting and standing statuses. Figure 3 shows that both accuracy and F1-score of 
the R-peaks detected by the HDIG method are significantly higher than those obtained 
by the optimal-threshold method (p < 0.05 for both measures).

To further explore the robustness of the proposed probabilistic approach to motion 
artifact, the performance of this method is compared to that of the optimal-threshold 
and PT [29] methods during the jogging status in which motion artifact occurs more 
often. Figure 4a shows a segment of the recorded ECG from the waist during jogging. 
This signal is highly contaminated by motion artifact (slowly varying signal), and the 
R-peaks are barely detectable by visual inspection. The detected R-peaks using HDIG, 
optimal threshold, and PT [29] are shown in Fig.  4b. One can observe that all the 
R-peaks are correctly detected by the HDIG method, and neither false positive (FP) nor 
false negative (FN) is produced. However, the optimal-threshold and PT methods pro-
duce several FP and FN in this segment of the recorded signal.

In the jogging status where motion artifact is consistently larger than that in the sta-
tionary statuses (sitting and standing), the performance of HDIG is significantly more 
reliable than that of simple threshold (p < 0.001) and PT [29] (p < 0.001). Figure 5 shows 
the F1-score of the detected R-peaks using these algorithms during jogging (the results 
of both silver and carbon sensors are combined). It is to be noted that in the jogging sta-
tus, due to the poor quality of the textile-ECG, true negative (TN) is high and therefore 
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Fig. 3 The detection performance of HDIG vs. optimal-threshold methods (see Additional file 1: Appendix 
B) for sitting and standing states. Both accuracy and F1-score measures of the HDIG method are significantly 
higher than that of the optimal-threshold method. One-way ANOVA test (F-distribution) is used, p-values for 
F1-score and ACC are, 0.014 and 0.004, respectively



Page 6 of 18Alizadeh Meghrazi et al. BioMed Eng OnLine           (2020) 19:48 

the true negative rate ( TN
TN + FP ) is near 1. Therefore, we use F1-score to quantify the per-

formance of the detected R-peak in the jogging state.

Heart rate can be reliably monitored from different locations on the waist: implications 

for sensor fusion

The ACC and F1-score of the detected R-peaks from various locations on the waist, 
namely, front, back, cross-I and cross-II (see "Materials and methods"), are evaluated in 
this section. The HDIG method is used to detect R-peaks from ECG signals recorded 
from each location on the waist. Figure 6 shows the ACC and F1-score of the detected 
R-peaks in the sitting and standing statuses for each location on the waist.

Although the accuracy of detected R-peaks is sufficiently high for all four locations, 
back and front sensors have relatively better performances. As shown in Fig. 5 (com-
pared to Fig. 6), the performance of R-peak detection significantly reduces during the 

50 uV 

1 Sec

Recorded ECG-waist (jogging)

Recorded ECG-chest (jogging)

1 Sec

Detected R-peak (HDIG)

Detected R-peak from gel electrode (chest)Detected R-peak from gel electrode (chest)

Detected R-peak (Optimal Threshold)

Detected R-peak from gel electrode (chest)

Detected R-peak (PT [29])

a

b

Fig. 4 A segment of ECG signal during jogging, which is simultaneously recorded from the chest and the 
waist, is shown in a. R-peaks are detected in B using PT [29] (left), optimal-threshold (middle) and HDIG (right) 
methods. The R-peaks of the chest ECG is plotted as the reference
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Fig. 5 The R-peak detection performance of HDIG, optimal-threshold, and PT methods during jogging. 
One-way ANOVA test is used, p-values are 0.00062 and 0.00011 for HDIG vs. optimal threshold and HDIG vs. 
PT, respectively
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jogging status. However, this performance can be compensated by exploiting multiple 
sensors using sensor fusion. Although this is not the focus of this paper, the evidence 
of R-peak detection from multiple locations on the waist can be considered as the 
first step toward the development of sensor fusion methodologies to detect various 
features of ECG from the waist.

Shape of QRS complex is preserved in the recorded ECG from the waist

Despite the fact that R-peak detection is the major step in estimating the heart rate 
variability, other features in the ECG signals like the QRS complex are useful for clas-
sifying heart-related diseases. In this section, we quantify the similarity between the 
shape of the QRS complex recorded from the waist (using textile electrodes) and that 
from the chest (using gel electrode). The similarity measure can be written as:

where QRSchesti  and QRSwaisti  indicate the ith QRS segment of the ECG signal recorded 
from chest and waist, respectively. All QRS segments are with the same length of L. 
As the similarity measure is normalized to the (average) energy of the QRS from chest 
(see [1]), this measure is positive and less than or equal to 1, where 1 represents the 
full match between QRSchesti  and QRSwaisti  . For each recorded ECG signal, the segments 
of the QRS complex are obtained by selecting 300  ms before and after the correctly 
detected R-peaks (i.e., true positive R-peaks). Figure 7 shows the selected QRS segments 
from a sample of recorded ECG.

As can be observed from this figure, the shapes of the QRS complex of the chest 
and the waist are almost similar. The similarity measure is calculated for both types of 
textile sensors during stationary statuses. Figure 8 demonstrates that the QRS simi-
larity measure (between waist and chest) is reasonably high (> 0.8) for both carbon 
and silver sensors. However, it is worth mentioning that the QRS duration appears to 
be longer in the waist-ECG compared to that in the gel electrode. Therefore, an accu-
rate estimation of P-wave and other features of ECG such as PQ interval and T-wave 
using textile sensors might be compromised (see Discussion for further details on the 
limitations of textile sensors).
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Fig. 6 F1 score and accuracy of different locations, sitting and standing for the combined silver and carbon 
sensors (ANOVA test, for each state (sitting–standing–jogging), for 4 groups (1) back, (2) front, (3) cross-I and 
(4) cross-II
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Discussion
Sensor fusion in wearable technology

Sensor fusion is the optimal integration and processing of data from multiple sensors 
that provide both redundancy and complementary data by maximizing information 
content. Sensor fusion reduces system’s sensitivity and uncertainty due to errors and 
artifacts, resulting in increased signal-to-noise ratios (SNR), enhanced system robust-
ness and reliability, improved resolution and precision, and increased the dimen-
sionality of measurements [6, 9, 39]. Sensor fusion has already received tremendous 
attention in automotive automation [40], mobile robot navigation [41], and target 
tracking [42]. In addition, sensor fusion techniques have been widely used in human 
movement analysis by using inertial measurement units (IMU) and respiration activ-
ity measurements given multiple physiological recordings. IMU-based sensor fusion 
have been used for pedestrian navigation (with GPS) [43] and human movement 
analysis in 3D orientations [44]. In respiration analysis, respiratory patterns have 
been analyzed with multiple ECG recordings [45] and data fusion techniques (e.g., 
modified Kalman filter [46]). Multi-sensing techniques, specifically in wearable sen-
sors where the data can be highly contaminated by noise, facilitate the development 
of sensor fusion methods. Therefore, utilizing fusion techniques to interpret multi-
sensor data from wearables is the next step towards optimizing health monitoring 
systems.

50 uV 

1 Sec 

Chest (gel-electrode)

Waist (textile silver)

... ...

... ...
100 m-sec 

Fig. 7 QRS segments obtained from ECG signals recorded from chest (top) and waist (bottom). The 
amplitude of each segment is normalized to its R-peak value
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Fig. 8 The QRS similarity measure for carbon and silver sensors



Page 9 of 18Alizadeh Meghrazi et al. BioMed Eng OnLine           (2020) 19:48  

Limitations of textile‑based waist band for extracting various features of ECG

The quality of the waist-ECG signal and the accuracy of R-peaks depend on the body posi-
tion. For example, in the sitting position, the quality of ECG was relatively similar for all 
different locations on the waist (no significant difference between different locations). This 
quality is reasonably high for all locations in standing position, however, the F1-score and 
ACC of “back” location were significantly higher than those of “cross-I” and “cross-II” loca-
tions (ANOVA p-value of F-statistic for both F1-score and ACC was < 0.05 for all pairwise 
comparisons). Despite the good enough similarity (> 0.8) of the QRS complex in the textile-
ECG (waist) and gel-ECG (chest), the quality of various features of textile-ECG is compro-
mised. For example, the QRS interval is prolonged and the amplitude of P-wave is reduced 
(not distinguishable from the baseline) in textile-ECG. Thus, the textile sensors might not 
be recommended when information of precise characteristics of ECG is to be inferred. In 
addition, textile sensors are highly sensitive (compared to the gel electrodes) to motions 
artifacts. In the jogging status, the quality of ECG and the performance of R-peak detection 
are influenced by large amount of motion artifacts.

Although the developed waist band provides a prototype for sensing ECG from multiple 
locations on the waist, further considerations on the textile sensors, electronics, and algo-
rithms can improve the quality of ECG signals. Specifically, with respect to electronics, hav-
ing textile-compatible electronics, e.g., placing pre-amplifiers subsequently after the textile 
sensors (i.e., active electrodes), can significantly improve the quality of ECG signals which 
in turn enhances the performance of R-peak detection algorithms. We investigate this line 
of research in our future studies.

Implication of the multichannel ECG band for the development of sensor fusion methods

In non-stationary and time-varying body positions, i.e., the jogging status, a combination 
of locations might provide high-quality ECG signals. This capitalizes on the importance of 
optimal integration of multiple sensors, i.e., sensor fusion, for different body positions in 
wearable health monitoring systems. It is to be noted that all the ECG sensors in the mul-
tichannel ECG band provide a common signal. However, information underlying different 
features of the ECG signal, e.g., QRS complex, is not distributed uniformly between those 
sensors. Each sensor, in certain positions of the human body, might contain different infor-
mation (of a common signal); thus, sensor fusion might be applied to better integrate data 
and infer information.

We anticipate that textile sensors and sensor fusion methodologies have the capability 
of non-invasively measuring and effectively processing a wide range of biometric signals. 
Therefore, e-textiles together with sensor fusion techniques can provide deep insights into 
an individual’s vital signs while increasing the quality, reliability, robustness, and precision 
of measurements. Systems utilizing this methodology can be used for widespread biologi-
cal signal monitoring and feedback during the day-to-day activities and clinical settings 
[47–49].

Conclusion
In this paper, we developed a textile-based multichannel ECG band that tracks heart rate 
changes from multiple locations on the waist. A data acquisition board was designed 
for multichannel recording through textile sensors. As well, we developed a novel 
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probabilistic approach to detect R-peaks from noisy ECG signals recorded by the textile 
sensors. We showed that the R-peaks can be reliably detected from different locations on 
the waist, and the shape of the QRS complex is comparable with that recorded from the 
chest using traditional gel electrodes.

Materials and methods
Textile sensors (textile development)

Different types of materials have been used to produce conductive textile electrodes, 
these materials can be embedded into fabrics as conductive fibers, such as carbon, cop-
per, or silver. In this paper, two different types of conductive textile electrodes were 
developed using silver-plated nylon yarns and carbon-coated nylon yarns. These yarns 
are the most frequently used conductive yarns in the smart textile industry. In order to 
compare the effect of these materials on ECG signal quality, textile-based multichannel 
ECG bands were knitted in a double jersey structure on a V-bed 18” gauge flat knitting 
machine. The textile electrodes were produced using Stoll flatbed knitting machines 
(Reutlingen, Germany) at Myant Inc. (Toronto, Canada). The electrode knitting struc-
ture can be seen in Fig. 9. Digital photographs were taken using Oitez USB microscope. 
Each band has 4 electrodes located at the iliac crest (×2) and across the frontal plane 
on the back (×2) (Fig. 10). The contact area of each textile electrode was 4.5 cm2 and 
the holding pressure of the textile electrodes in the band was 10 mmHg. The base band, 
which was the foundation for the electrodes, was made of a stretchable and washable 
fabric, regularly used in underwear/bra, waist/chest bands.

Fig. 9 Photograph of textile sensors, silver (a, b), and carbon (c, d)
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Multichannel ECG recording unit

Recording ECG with dry textile electrodes is generally challenging as the electrode–skin 
contact impedance is high, and it significantly varies between the electrodes [50]. This 
attenuates the signal before it can be amplified, and accordingly reduces the signal-to-
noise ratio. In addition, the mismatch between electrodes results in high levels of inter-
ference noise on the signal [51]. In this paper, a custom-made biosignal recording system 
is developed to simultaneously record 8-channel ECG signals. Figure 11 shows an image 
of the developed 8-channel ECG measuring unit.

The block diagram of the electronic circuit is depicted in Fig. 12.
As shown in Fig. 12, the first stage includes diodes for high-voltage protection, low-

tolerance series resistors for limiting the current, and a differential passive low-pass fil-
ter for RF rejection (4 kHz cut-off frequency). The gain of the instrumentation amplifier 
was set to 10. An integrator circuit was implemented from instrumentation output to its 
reference as a negative feedback that acts as a high-pass filter with cut-off frequency of 
0.16 Hz. The next amplifier has an adjustable gain between 5 and 100 and it works as a 
second-order low-pass filter with a cut-off frequency of 40 Hz. The last analog stage is 
a second-order high-pass filter (at 0.16 Hz) with a gain of 3.6. Therefore, the total high-
pass filtering is of the third order. The cut-off frequencies were set based on the require-
ments for ECG monitoring which suggests maximum of 0.5  Hz for ECG monitoring 
applications and minimum 35 Hz for low-pass filtering [1]. The gain of all 8 channels was 
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Back

Cross-I Cross-II

Fig. 10 Photograph of the whole band. Schematic of gel electrode placement on chest and waist band 
electrode locations + vectors
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calibrated to be about 3000. This value was found appropriate to have a minimum quan-
tization error while avoiding the amplifiers to saturate frequently due to motion artifact. 
The ground electrode was connected to the mid-rail driven by an operational amplifier. 
The outputs of all 8-channels go to the 12-bit resolution ADC of a STM32 microcon-
troller (multiplexing ADC) which transmits the data to a computer through Bluetooth. 
The circuit is powered with a 3.6 V battery and the sampling frequency was 200 Hz.

Three simultaneous recordings of ECG signals from chest (gel electrode, channel 4) 
and waist (silver textile electrode, channels 2 and 3) are plotted in Fig. 13.

Signal processing (algorithm)

This part is a detailed explanation of the different steps used for the proposed algorithm.

Background, prior works, and proposed algorithm
The ECG signal is nonlinear and non-stationary. ECG signal processing and feature 
extractions are more robust with nonlinear methods [52]. The most important features 
of an ECG signal (see Fig.  14) are: P-wave (atrial depolarization), T-wave (ventricu-
lar repolarization), and the QRS complex (ventricular depolarization). The QRS com-
plex is the most prominent feature in an ECG signal, which has been widely used for 
the diagnosis of cardiac diseases and the assessment of the irregularities in the heart 
rhythm [53]. The accurate and efficient detection of R-peaks from the ECG signal is 
essential for further post-processing and classification of ECG signals. Due to the non-
stationary nature of an ECG signal, and relatively high sensitivity of wearable sensors 
to motion artifacts and other external interferences, accurate detection of R-peaks from 
the waist is challenging in wearable technology. From a signal processing point of view 

Fig. 11 Photo of the designed board
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[29], discrete wavelet transformation [54], empirical mode decomposition [55, 56], Hil-
bert transformation [57–59], and artificial neural network [60] are the most recognized 
methods for R-peak detection (see [53] for the details of each method). It is to be noted 
that almost all of these approaches characterize heart rate variability (equivalent to 
transient changes of R–R intervals, i.e., the interval between two adjacent R-peaks) as a 
deterministic continuous process—rather than a random (Poisson point) process where 
R–R intervals indicate the time difference between electrical impulses from the heart’s 
conduction system that represent ventricular contractions [3]. By incorporating Poisson 
point process model of the dynamics of R–R intervals, a novel probabilistic approach is 
developed in this paper to estimate the R–R intervals (and accordingly detect R-peaks) 
in real-time. Our proposed algorithm consists of four building blocks: (1) pre-processing 
(denoising), (2) energy calculations, (3) smoothing and (4) R-peak detection. The details 
of each block are described as follows. For better understanding the performance of each 
step, Fig. 15 shows the results of each step on a 5-s sample ECG signal.

Pre‑processing

We use a discrete wavelet transform for denoising and pre-processing the recorded ECG 
signals. The sym6 wavelet is utilized to decompose the signal up to 5 levels. The fifth 
approximate coefficient is subtracted from the signal to eliminate the baseline drift (de-
trending the signal). The rigsure threshold method is applied to the detailed coefficients 

Fig. 13 Screenshot of simultaneously recorded ECG signals (three channels in this example) using the 
developed recording unit. Note: channel 1 is grounded, and not shown in this figure
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Fig. 14 Most significant features of a typical ECG signal
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to remove the high-frequency components. Finally, the de-noised signal is reconstructed 
from the thresholded detailed coefficients.

Energy calculation

To enhance the representation of the R-peaks, the energy of the derivative of the pre-
processed signal, x(t), is calculated:

where En[.] denotes the time-varying energy of the derivative of the pre-processed signal 
x(t).

The goal of this step is to amplify the effects of instances with abrupt changes (i.e., 
increase the signal-to-noise ratio R =

local maximal peak
nearby smaller peaks ), hence R-peaks will be detected 

with higher probability (with respect to the adjacent smaller peaks).

Smoothing

To eliminate the fluctuations surrounding the local peaks in the calculated energy (see 
[2]), En[x] is filtered by a narrow Gaussian kernel (µ = 0, σkernel = 300 ms):

where “*” indicates convolution, and N(.) is a zero-mean Gaussian kernel with a standard 
deviation of σ. This step helps better detection of R-peaks by smoothing the fluctuations 
near the peak of the energy signal.

(2)En[x(t)] =

(

d(x(t))

dt

)2

,

(3)Z(t) = En[x(t)] ∗ N
(

µ, σ 2
)

,
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Fig. 15 Schematic representation of the proposed algorithm
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R‑peak detection

An iterative probabilistic approach is developed—based on prediction and update strat-
egies—to detect the peaks of Z(t). We use an optimal search method to detect peaks 
based on the History-Dependent Inverse Gaussian (HDIG) point process model of 
heartbeat intervals [3, 61]. Given any R-peak index uk, the RR interval is calculated 
based on HDIG model using the previously detected R-peaks within the 25-s interval 
preceding uk. The HDIG model provides precise probabilistic definitions of heart rate 
variability that can be updated at any desired time resolution. The time-varying param-
eters of the HDIG point process model are estimated by the local maximum likelihood 
estimation of instantaneous heart rate variability [3]. The search for the next R-peak, 
in prediction step, is performed within the interval I = (uk + RR(k)− a,uk + RR(k)+ a) 
for some chosen a (a = 300 ms in this work). The new R-peak, uk+1, is calculated, in the 
update step, as the maximum of Z(t) for t ɛ I. In fact, the HDIG model is incorporated to 
predict the interval within which the next R-peak occurs. Then, the detected R-peak in 
this interval updates the predicted R–R interval.

It is to be noted that we compare the performance of this probabilistic method (based 
on HDIG) in detecting R-peaks with that of the optimal-threshold method (see Addi-
tional file 1: Appendix B for details on this method). Therefore, steps 1–3 of our algo-
rithm are the same for both methods.

Statistical tests

The ANOVA tests are performed to compare different groups and to decide if they are 
significantly different. All ANOVA tests are performed for pairwise comparisons, i.e., 
two groups in each test. For example, for comparing the F1-scores of HDIG and that of 
PT, in the jogging state, all (jogging) samples from different electrodes across the waist 
are included. Then, the pairwise ANOVA test is performed: F-statistic is calculated and 
the corresponding p-values are shown.

For pairwise comparisons, the ANOVA test and t-test are almost equivalent. Both 
tests consider the difference between groups by comparing their mean and standard 
deviation. ANOVA test is more appropriate than t-test when ≥ 3 groups are to be com-
pared. And, we choose ANOVA test over t-test to be consistent with the possible “com-
parisons for ≥ 3 groups” in the future work, e.g., it might be needed to compare multiple 
(≥ 10) electrode materials. Thus, ANOVA tests can be performed for all 10 groups, and 
if the results were significant, the group with the highest mean can be selected.

Supplementary information
Supplementary information accompanies this paper at https ://doi.org/10.1186/s1293 8-020-00788 -x.

Additional file 1. Details of optimal-threshold method & statistical measures of R-peaks. This section includes two 
appendices, namely, A) statistical measures of the performance of detected R-peaks, and B) optimal-threshold 
method.
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